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Abstract

Computing marginal probabilities (whether prior or posterior) in Bayes-
ian belief networks is a hard problem. This paper discusses deterministic
approximation schemes that work by adding up the probability mass in a
small number of value assignments to the network variables. Under cer-
tain assumptions, the probability mass in the union of these assignments
is sufficient to obtain a good approximation. Such methods are especially
useful for highly-connected networks, where the maximum clique size or
the cutset size make the standard algorithms intractable.

In considering assignments, it is not necessary to assign values to vari-
ables that are independent of (d-separated from) the evidence and query
nodes. In many cases, however, there is a finer independence structure not
evident from the topology, but dependent on the conditional distributions
of the nodes. We note that independence-based (IB) assignments, which
were originally proposed as theory of abductive explanations, take advan-
tage of such independence, and thus contain fewer assigned variables.

As a result, the probability mass in each assignment is greater than
in the respective complete assignment. Thus, fewer IB assignments are
sufficient, and a good approximation can be obtained more efficiently.
IB assignments can be used for efficiently approximating posterior node
probabilities even in cases which do not obey the rather strict skewness
assumptions used in previous research. Two algorithms for finding the
high probability IB assignments are suggested: one by doing a best-first
heuristic search, and another by special-purpose integer linear program-
ming. Experimental results show that this approach is feasible for highly
connected belief networks.




1 INTRODUCTION

Computation of marginal probabilities of variables in a Bayesian belief network
is a problem of particular research interest for the probabilistic reasoning com-
munity. Although a polynomial-time algorithm for computing the probabilities
exists for polytrees [21], the problem was proved to be NP-hard in the general
case in [9]. Several categories of exact algorithms exist for computing posterior
probabilities: clustering and junction-trees [23, 20], conditioning [10], arc rever-
sal [36], and term evaluation [24]. Many variants of these algorithms attempt
various refinements of these schemes, e.g. [13]. All of these algorithms have
exponential-time algorithms in the worst case, where the runtime is a function
of the topology and the number of states each variable can assume (in this paper
we only refer to networks where each variable has a finite number of states).

In the hope of avoiding an exponential runtime, a host of approximation
algorithms have emerged. As it turns out, theoretically, even approrimat-
ing marginal probabilities in belief networks is NP-hard, an thus there is no
polynomial-time (deterministic) approximation algorithm unless P=NP [11].
Most approximation algorithms are less affected by network topology, and are
dependent on the actual probabilities as to their runtimes and quality of ap-
proximation. If the topology of a given network is such that exact algorithms is
expected to take a long runtime, it may be advisable to run an approximation
algorithm and hope that the probabilities are such that we can get a good ap-
proximation in reasonable time for the problem instance at hand. In addition,
most approximation algorithms have an anytime behaviour, which facilitates
trading off time for precision in a graded manner.

Two major categories of marginal probability approximation algorithms ex-
ist: randomized approximation algorithms, and deterministic approximation
algorithms. In [19), approximation is achieved by stochastically sampling in-
stantiations of the network variables. Later work in randomized approximation
algorithms attempts to increase sampling efficiency [4], and to handle the case
where the probability of the evidence is very low [15], which is a serious problem
for most sampling algorithms. In what follows, we focus on the second category,
deterministic approximation algorithms. In bounded conditioning [14], one uses
the conditioning method, but conditions only on a small, high probability, sub-
set of the (exponential size) set of possible assignments to the cutset variable.
Other approximation algorithms attempt to simplify the network by removing
arcs between nodes that are almost independent, to produce a network that is
hopefully tractable topologically. An exact algorithm is then run on the “ap-
proximate” network, to produce an approximate answer [22]. Another source
of complexity is the large number of states per node in various applications. To
alleviate that problem, an approximation based on merging states was suggested
[41). The scheme begins by making all variables unary valued, and successively
refining the states of variables, while performing probability updating on the
approximate network and thus getting a successively better approximation in




each step.

Another category of deterministic approximation algorithms is based on de-
terministic enumeration of terms or assignments to variables in the network.
The idea is to enumerate a set of high-probability complete assignments to all
the variables in the network (but frequently partial assignments suffice, see be-
low). The probability of each such assignment can be computed quickly: in
O(n), or sometimes even (incrementally) in O(1). The probability of a particu-
lar instantiation to a variable v (say v = v,) is approximated by simply dividing
the probability mass of all assignments which contain v = v; by the total mass
of enumerated assignments. If only assignments compatible with the evidence
are enumerated, this gives the posterior probability of v = v,. If the enumer-
ated assignments have a sufficiently large probability mass, then we get a good
approximation.

In [12] the ideas of incremental operations for probabilistic reasoning were
investigated. Among them was a suggestion for approximating marginal prob-
abilities by enumerating high-probability terms. One interesting point is the
skewness result: if a network has a distribution such that every row in the
distribution arrays has one entry greater than 2=1, then collecting only n + 1
assignments, we also have at least % of the probability mass. Taking the topology
of the network into account, and using term computations, this can presumably
be achieved efficiently. However, the skewness assumption as is seems some-
what restrictive. The assumption may hold in some domains, such as circuit
fault diagnosis, but not in medical diagnosis, or in the randomly generated net-
works on which we tested our algorithms. Trying to relax the constraint, say
to probability entries greater than (2:1)2, already forces us to look at O(n?)
assignments to get similar results.

In [28] partial assignments to nodes in the network are created from the
root nodes down. The probability of each such assignment is easily computable.
Much saving in computational effort is achieved by not bothering about irrele-
vant nodes, i.e. nodes not above some node that is in the query set, or nodes that
are d-separated from the evidence nodes. Later in that paper, an assumption of
ertreme probabilities is made. This is similar to the skewness assumption above.
In fact, in the circuit fault diagnosis experiment in [28], the numbers actually
used are well within the bounds of the skewness assumption. The algorithm
makes use of a conflict scheme in order to narrow the search.

It was already suggested (38, 17] that belief networks frequently have inde-
pendence structure that is not represented by the topology. Sometimes inde-
pendence holds given a particular assignment to a set of variables V, rather
than to all possible assignments to V. In such cases, the topology is no help
in determining independence (e.g. d-separation might not hold), the actual dis-
tributions might have to be examined. In [38] the idea of independence-based
(IB) assignments was introduced. An assignment is a set of (node, value) pairs,
which can also be written as a set of node=value instantiations. An assign-
ment is consistent if each node is assigned at most one value. Two assignments




are compatible if their union is consistent. Each assignment denotes a (sam-
ple space) event, and we thus use the assignment and the event it denotes as
synonymous terms whenever this does not lead to ambiguity. An assignment A
subsumes assignment B if A C B.

The IB condition holds at a node v w.r.t. an assignment A if the value
assigned to v by A is independent of all possible assignments to the ancestors of
v given Aparents(y), the assignment made by A to the immediate predecessors
(parents) of v. An assignment is IB if the IB condition holds at every v €
span(A), where span(.A) is the set of nodes assigned by A. A hypercube H is an
assignment to a node v and some of its parents. In this case, we say that A is
based on v. N is an IB hypercube if the IB condition holds at v w.r.t. A.

In {38], IB assignments were the candidates for relevant explanation. Here,
we suggest that computing marginal probabilities (whether prior or posterior),
can be done by enumerating high-probability IB assignments, rather than com-
plete assignments. Since IB assignments usually have fewer variables assigned,
each IB assignment is expected to held more probability mass than a respective
complete (or even a query and evidence supported) assignment. The probability
of an IB assignment is also easy to compute [38]:

P(A) = H P(A{v}Mparents(u)) (1)
vespan(A)

where Ag is the assignment A restricted to the set of nodes S. The terms in vhe
product can each be retrieved in O(1) from the conditional distribution array
(or other representation) of the node conditional distribution.

One might argue that searching for high-probability assignments for ap-
proximating marginal distributions is a bad idea, since coming up with the
highest-probability assignment is NP-hard [39]. Thus, we are using an NP-hard
algorithm to find an approximate solution to an NP-hard problem, where we
might expect that a polynomial time algorithm can be sufficient to compute
approximations. However, as noted above, [11] showed that this problem is also
NP-hard. Therefore, using this kind of approximation algorithm is a reason-
able proposition, provided that some sub-classes of the problem that are bad
for existing algorithms can be shown to behave well, either theoretically or by
empirical results that show good behaviour on the average for some classes of
problems. Since runtimes of our algorithms depend in a complicated manner on
the conditional probabilities, it is very hard to get any theoretical bounds on
the runtime for interesting classes of networks. In this and related papers, we
thus take the experimental route to justify our performance claims.

The rest of the paper is organized as follows: section 2 discusses the details
of how to approximate posterior probabilities from a set of high-probability
IB assignments. Section 3 reviews the IB MAP search algorithm of [38], and
discusses a faster heuristic best-first algorithm for finding the high-probability
IB assignments, based on the heuristic presented in [7]. Section 4 reviews the




reduction of IB MAP computation to linear systems of equations 38}, incorpo-
rating a few improvements that reduce the number of equations. Searching for
next-best assignments using linear programming is discussed. Section 5 presents
experimental timing results for approximation of posterior probabilities on ran-
dom networks. We conclude with other related work and an evaluation of the
IB MAP methods.

2 Computing Marginal Probabilities with IB As-
signments

The probability of a certain node instantiation, v = v;, is approximated by the
probability mass in the IB assignments containing v = v; divided by the total
mass. If we need to find the probability of v, then v is a query node. Nodes
where evidence is introduced are called evidence nodes. We also assume that
the evidence is conjunctive in nature, i.e. it is an assignment of values to the
evidence nodes. We need to assume that each enumerated IB assignment A
contains some assignment to query node v. Otherwise, it might be impossible
to tell which part of the mass of A supports v = v;. Let us assume for now
that this is indeed the case, i.e. we have a set I containing IB assignments, and
if A € I then v € span(A). Thus, to compute the (approximate) probability of
v = vy, we compute:

PH{AA€IA{v=1]}€A)})
P({AlA €T}

Where the probability of a set of assignments is the probability of the event
that is the union of all the events standing for all the assignments (not the
probability of the union of the assignments). If we are computing the prior
probability of v = v;, we can either assume that the denominator is 1 (and not
bother about assignments assigning v a value other than v, ), or use 1-P({A|4 €
I}) as an error bound. If all IB assignments are disjoint, the probability of the
union is easily computable, and is simply the sum of probabilities of the IB
assignments.

) However, since IB assignments are partial, it is possible for the events de-

noted by two different IB assignments to overlap. For example, let {u, v, w} be
nodes, each with a domain {1,2,3}. Then A = {u = 1,v = 2} has an over-
lap with B = {u = 1,w = 1}. The overlap C = AU B is also an assignment:
C = {u=1,v=2,w=3}'. Thus, to compute the probability of a set, some
other method must be used.

Computing the union of the IB assignments in a representation that makes
computation of the probabilities easy is non-trivial. It turns out that we can
use the inclusion-exclusion principle, due to the following property:

P,(v=1)

INote that for two assignments A, B, the union of A and B denotes the event that is the
intersection of the events denoted by A and B.




Theorem 1 Let A, B be compatible IB assignments. Then AU B is also an IB
assignment.

Proof: Let C = AUB. Clearly, C is a cousistent assignment. It suffices to
show that for each node in v € span(C), the IB condition holds at v w.r.t. C.
Without loss of generality, let v € span(.A). Then v is independent of all its
of ancestors given Apsrents(v): NoW, Aparents(v) € Cparents(v), and thus, by a
variant of weak union ([26] page 84), v is independent of all of its ancestors not
in span(C) N parents(v) given Cparents(v)-

Despite this theorem, evaluating the probability of a set of IB assignments
may require the evaluation of an exponential number of terms. That is due to
the equation for implementing the inclusion-exclusion principle:

m
PUicigmE) = Y (-1D¥' > bk,

k=1 1<a:<...<ar<m

where E; is the ith event. Several ways exist to overcome this problem, which we
review in short in the discussion section. In the description of the algorithms,
this issue is temporarily ignored for simplicity.

How many of the highest probability IB assignments are needed in order to
get a good approximation? Obviously, in the worst case the number is expo-
nential in n. However, under the skewness assumption [12] (reviewed in section
1) the number is small. In fact, it follows directly from the skewness theorem
[12] that if the highest (or second highest) probability complete assignment is
compatible with A,,,, the highest probability IB assignment, and A,y has at
least log, n unassigned nodes, then the 2 highest IB assignments contain niost
(2 %) of the probability mass. It is possible to extend the skewness theorem

to include O(n*) terms, in which case the mass will be at least T—"em, where
Ti(z) is the polynomial consisting of the firsu k terms of Taylor expansion of
e®. Thus, under the above conditions, if Aop: has (k + 1)log, n unassigned
nodes, the highest probability IB assignment will contain at least T_"e(ll of the
probability mass.

Given a set of query and evidence nodes, all non-supported (redundant)
nodes can be dropped from the diagram. A node v is supported by a set of
nodes V if it is in V or if v is an ancestor of some node in V. A node supported
by the evidence nodes is called evidentially supported, and a node supported
by a query node is called query supported. We are usually only interested in IB
assignments properly evidentially supported by some set of evidence noces. An
assignment is properly evidentially supported if all the nodes in the assignment
have a directed path of assigned nodes to an evidence node. Likewise, an IB
assignment is properly query supported if every node in the assignment obeys
the above condition w.r.t. query nodes.

Before we start searching for IB assignments, we drop all evidence nodes
that are d-separated from the query nodes, as well as all the nodes that are not




either query supported or supported by one of the remaining evidence nodes.

We are now ready do describe the basic anytime best-first search algorithm.
The existence of a generator is assumed. Each time the generator is calleq, it
returns the next-best (next highest probability) IB assignment consistent with
a set of initial assignments. Some variants of the algorithm use more than one
generator instance.

e Input: a Bayesian belief network B, evidence £ (a consistent assignment),
a query node g.

o Output: successively improved approximations for P(¢ = ¢;), for each
value ¢; in the domain of node gq.

1. Preprocessing
e Sort the nodes of B such that no node appears after any of its an-
cestors.
o Initialize the IB hypercubes for each node v € B.
2. Initializing: remove redundant nodes, and for each ¢; in the domain of ¢
do:
(a) Set up a result set for g;.
(b) Add the assignment £U {g = ¢;} to the initial assignment set for the
generator.

3. Repeat until time limit or generator returns null:

(a) Get next-best IB assignment A from the generator.
(b) Add A to the result set of g;, where {¢ = ¢;} € A.
(c¢) Update the posterior probability approximation.

The simplest generator is a best first search with the current probability
heuristic, which is exactly the inner loop of the algorithm in [38], (also described
in the following section). In this paper, we also look at two other generators:
a best-first search algorithm based on the cost-sharing heuristic, and an integer
linear program scheme, modified from [38].

The posterior probability approximation for ¢ = ¢; given the evidence is:

P(result set for g¢;)

P,
¢ 2_; P(result set for ¢;)

As before, for null evidence, 1 — ¥, P(result set for ¢;) is the unassigned prob-
ability mass, and can be used to bound the error, as in [28]. In order to bound
the error for non-null evidence, we evaluate the probability that the evidence




is false by using the same scheme. That is, add to the initial.zation set the
assignment FALSE to the evidence node?, and create a result set for it.

Note that the preprocessing need only be done once for each network, and
the results can be used for different query and evidence sets. Alternately, it
is possible to do most of the preprocessing incrementally by moving it into
the loop, and initialize the hypercubes for a node only when we first try to
expand it (i.e. inside the generator). This way, the algorithm can sometimes
start providing answers before initializing all the hypercubes. In fact, it is
not even necessary that the belief network be explicitly represented in entirety.
Applications which construct belief networks incrementally (such as WIMP [5])
might benefit from not having to generate parts of the network unless needed
for abductive conclusions.

A variant of the algorithm uses several generators, one for each assignment
in the above described initialization sets (thus each generator now gets an ini-
tialization set of size 1). Thus, there is one generator for the negation of the
evidence, and one generator for each state of the query node. In each approxi-
mation step, get one next-best IB assignment from each generator, and proceed
to update the marginal probability estimate. We believe that this version of the
algorithm achieves a better balance for the case where the posterior probability
of some state of the query node is low, and thus a better relative approximation.
This issue is orthogonal to the actual algorithm used to find the IB assignments,
and is ignored henceforth.

To generalize this algorithm to m query nodes, it is sufficient to initialize
a result set for every state in the domain of each node (not the cross product,
which is what we would so if we wanted to find the posterior joint probability
of the query nodes), and to add to the initialization set an assignment for each
such state. When an IB assignment is found, it is added into m result sets, one
for each query node. To evaluate the probability approximation, divide by the
probability of the set of assignments collected for only one of the nodes (any
one will do).

Experimental results from [38)] suggest that at least the highest probability
IB assignment (the IB-MAP) can be found in reasonable time for medium-
size networks (up to 100 nodes), but that problems start occurring for many
instances of larger networks. Experiments for finding several of the next-best IB
assignments are reviewed in section 5, and timing results tend to indicate that
next-best assignments are found rather quickly after the first one. However, we
would still like to see a faster algorithm. The method of using IB assignments
to approximate posterior probabilities can be divorced from the search method
(the generator). Any generator providing the IB assignments in the correct

?We can assume without loss of generality that the evidence consists of a single binary
valued node. Otherwise, create a new, deterministic, binary valued node with all the evidence
nodes as parents, with the requisite function (usually the new node is TRUE if all parents
are instantiated as in the evidence, FALSE otherwise, i.e. the new node is a generalized AND
node).




order will do. In the next section, we discuss how the linear program techniques
used in [35, 38] can be used to deliver IB assignments in decreasing order of
probability, for posterior probability approximation.

3 Heuristic Search IB-Assignment Generators

In this section, we present best-first heuristic search generators for the marginal
probability approximation algorithms. We begin with the simple, current prob-
ability heuristic algorithm (38}, and then discuss the better cost-sharing heuris-
tic. The best-first algorithm keeps a sorted agenda of states, where a state is
an assignment, a node last expanded, and a probabiiity estimate:

e Input: a Bayesian belief network B, a set of consistent assignments E

e Output: The next best IB assignment, consistent with some £ € E

1. Initializing: for each £ in E, push into the agenda the assignment £ with
a probability estimate of 1.

2. Repeat until empty agenda:

(a) Pop assignment with highest estimate .A from the agenda, and remove
duplicate assignments (they will all be at the top of the agenda).

(b) If A is IB, return it.

(c) Otherwise, expand A at v, the next node, into a set of assignments
S, and for each assignment A’ € S do:

i. Estimate the probability of A’.

ii. Push 4 with its probability estimate and last-expanded node v
into the agenda.

When the generator is resumed (i.e. called after it returns the first time), the
resumption point is at step 2. Expanding a state and the probability estimate
is exactly as in [38): A’ = AU N, where M/ is the jth IB hypercube based on
v that is maximal w.r.t. subsumption and consistent with .4. The probability
estimate is the product of hypercube probabilities for all nodes were the IB
condition holds.

We now consider improving the performance of our search algorithm by using
a different heuristic than current probability (which is essentially the same as
“cost-so-far” [40]). The idea is that cost-so-far gives little information early on
in the search, while including costs that will be incurred later on (higher up in
the DAG) give us a better estimate. However, one cannot just add the costs
to be incurred in the future, because in multiply connected networks one node
cost (negative logarithm of probability) would be counted multiple times, and
we would no longer have an admissible heuristic. The idea of dividing the cost to
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be incurred by the number of children, the “cost-sharing” heuristic, was pursued
in [7] for proof graphs (AND/OR DAGs). The cost sharing heuristic showed a
marked improvement in performance over the cost-so-far heuristic when applied
to graphs generated by WIMP [6]. Since the above generator is a best-first
search algorithm that uses the cost-so-far heuristic, plugging in the cost-sharing
heuristic ought to give us a great improvement in performance, assuming that
it can be applied to IB assignment search.

The cost-sharing heuristic is admissible only if the expansion operator is over
edges (rather than nodes), and obeys the minimal cut property. A cut of an
AND DAG (a directed acyclic graph containing only AND nodes) is a set of
edges E such that every path from any root node to a leaf node contains an
edge from E. A cut is minimal if it is setwise minimal, i.e. if no edge can be
removed from E such that there is still a cut. (what we call a2 “minimal cut”
here is the same as a “cut” in [7].) For an AND/OR DAG D, E is a cut if
D contains a complete AND DAG (intuitively: completely specified proof) for
which E is a cut. Likewise for a minimal cut of an AND/OR DAG.

In order to use the heuristic, we must first convert our probiem into a
weighted AND/OK DAG (WAODAG), and then provide an edge-bz:»d operator
that preserves the minimal cut property. We must also show that probabilities
are equivalent to costs in the WAODAG. If we do all of the above, we are assured
by the results of [7], that the heuristic is admissible for our search, and that this
algorithm variant indeed comes up with the highest-probability IB assignment.

To convert our problem into the WAODAG formulation, we perform a con-
struction similar to [8] or [40]. The algorithm is given a belief network B =
(V, A, P), and evidence £3 We construct a WAODAG W(B,€) = (G,c, f,S)
. that is equivalent to the original belief network and evidence. In a WAODAG,
G is the underlying DAG, f is the lobel of a node, which is either AND or OR,
¢ is the cost function, and S is the sink node. The construction is as follows,
except for the costs, which are discussed later on:

o For each possible node-state (v,d) € £U{(v,d) | v € V —span(£)d € D, }
construct a OR node N'“. Note that for each evidence node, only one
state is possible.

e Construct an AND node S, with parents N** for all (v,d) € £, i.e. all the
evidence node-states.

e For each maximal IB hypercube based on any node v that assigns value d
to v, construct an AND node H,?‘, where 1 is the index of the hypercube
among all the hypercubes that are based on v and assign a value d to
v (the actual order is immaterial). We call H?* the nude image of the

3Note that query nodes essentially become evidence nodes, in the context of searching for
the best IB assignment. Additionally, we can assume without loss of generality that ail nodes
are either evidence or query nodes, or ancestors of some such node (otherwise they can just
be dropped from the diagram).
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hypercube, and use it as a synonym for the hypercube itself whenever
unambiguous.

e For each maximal IB hypercube as above, construct a node SC,-‘", the
hypercube’s “self cost” node.

e Construct a directed edge from each hypercube H}" to Nv*.

s Each hypercube assigns some state to some of a node’s parents. Let Af‘
be the set of node-state pairs in hypercube H}". Construct an edge from
each nude Nv* € A}" to H:".

o From each self-cost node SC,?" construct a directed edge ESC,V‘ (self-cost

edge) to the respective H,?". Node SC’:" can be viewed as an AND node
with no parents.

Let AD be a complete AND DAG in W, and let X be the set of hypercubes
H:" in AD. Define a(AD) to be the assignment consisting of the union of all
the hypercubes H}" € H. Let C be a (minimal) cut of W consisting only of
the self-cost edges of a set of hypercubes H. As before, define a(C) as the
assignment consisting of the union of all the hypercubes in H. Likewise, if C is
a set of edges (not necessarily a cut or a minimal cut), define a(C) to be the
union of all the hypercubes for which their self-cost edge is in C.

We now complete the definition of the WAODAG by defining the cost func-
tion. The cost of a self-cost node ¢(SCY") = — log P(H,?"). The rest of the costs
are defined as in [7], as follows:

e The cost of a self-cost edge is the cost of iis source node, i.e. c(ESC’}") =
eo(SCY*) = —log P(HY").

o The cost of a hypercube c(H:") is the sum of the costs of the incoming
edges.

o The cost of each edge with a hypercube node as a source is the cost of its
source hypercube.

e The cost of any other edge is the cost of its source node N v* divided by
the number of children that v has in B.

e The cost of a node-state node N** is the minimum of the costs of all of
its incoming edges.

Since W is a DAG, and the above defines costs only in terms of the belief
network or edges and nodes above, this definition is well grounded (i.e. is not
circular).

12




The generator keeps an agenda of states, where a state is a set of edges, a
minimal cut C. For convenience and efficiency, we also keep the hypercubes,
last expanded node, current heuristic value, etc. but these can all be computed
from the cut C. The heuristic value of a state is the sum of its edge costs.
Our expansion operator o (a function from a set of edges to a set of sets of
edges, i.e. essentially from a state to a set of next states) is the same as in (7],
except that when an OR node is expanded to include an edge from a hypercube
Hi‘" to N**, we expand the hypercube node (which is an AND node) as well
in the same expansion step. This does not affect either the heuristic value or
the reachability of final states. Hence, to prove that this heuristic is admissible,
the results of [7] can be directly applied. We begin by presenting the algorithm
for searching for IB MAP. Its extension to compute next best IB assignments
and posterior probabilities is exactly the same as for the cost-so-far heuristic
search. To use this algorithm as a generator, we assume that there is only one
assignment in the initialization set, and call it the evidence.

e Input: a Bayesian belief network B, and a consistent assignment £, the
evidence.

e Output: Next best IB assignment.
1. Initializing
(a) Remove redundant nodes.

(b) Create the WAODAG from the top down, while computing node and
edge costs.

(c) Create a dummy outgoing edge e from S, with cost equal to ¢(S)
(the dummy “edge” does not even need to have a sink).

(d) Push the singleton set {e} onto the agenda, with heuristic cost equal
to c(e).
2. Repeat until empty agenda:
(a) Pop state with lowest cost estimate C from the agenda, and remove
duplicate states (they will all be at the top of the agenda).

(b) If the assignment is IB (all edges are self cost edges), return it.
(c) Otherwise, find the earliest node N** which is a source of an edge e
in C, and compute ¢(C). That is, expand C at e (we also call this

“expanding at node v”) into a set of states C. For each state C' € C
do the following:

i. Find if C’' corresponds to a consistent assignment, and if not,
discard it.

ii. Compute the heuristic value for C' as the sum of edge costs.
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iii. Push C' into the agenda.

Expanding a state C at e with source N (computation of o) works as
follows: Let E be the set of edges with source N** in C. The parents of
NY are H}" with 1 < ¢ < indegree(N,»"‘). Then the new states C;, 1 < i <
indegree(N"‘) are C; = C—-E+ incoming(H}"). Note that by construction,
each application of the expansion adds one self-cost edge to C, thereby adding a
hypercube to the assignment defined by the cut. Each of the new states amounts
to a different choice of hypercube at v, just like the cost-so far algorithm. In
[33], we show that the algorithm is correct.

This algorithm diverges from that of [7] in that when an edge from an OR
node is expanded, the AND node which is its parent is also expanded immedi-
ately, in the same expansion step. This does not affect the correctness of the
algorithm, since for all consistent self-cost-only cuts C either it is reachable, or
a(C) is subsumed by some IB assignment a(C’), where C' is reachable:

The algorithm also diverges from [7] in that the cost of an edge is the cost
of its source node N** divided by the out degree of v in B, rather than the out

degree of N ** in W. That is permissible because of all the nodes H}“ (where u
is a child of v in B, and for any value d’ and hypercube index i) only one appears
in any AND DAG, and thus the cost is only shared among at most outdegree(v)
edges. This argument is similar to the one presented in the conclusion of [7].

Note that it is possible for an edge e with source v to exist in C, where
actually the IB condition holds at v w.r.t. a(C). In this case, we still need to
expand e, but it does not matter which next state is selected, they all result
in the same assignment (counting only consistent assignments). In the actual
implementation, to prevent the creation of too many duplicate states, the first
one of these that is consistent is pushed into the agenda, and all the others are
discarded. While the selection of edges may affect the search in that the cost
estimation may be different, it cannot affect the final result in this case.

Finally, how is this generator to be used in the marginal probability approxi-
mation algorithm? In the variant where each generator gets a singleton set as an
initialization set, the generator need no modification. In the variant where one
generator is used for all states, only minor modifications are needed, as follows.
First, we need to create S;, a copy of the node S, for each assignment &; in the
initialization set, and create the WAODAG accordingly. One dummy edge e;
is created for each node S;, and one agenda item is created initially for each
&;. No further modifications are necessary. Something is lost by the fact that
to find assignments consistent with just the negation of the original evidence
node (used for bounding the error in the approximation algorithm), we do not
need any predecessors of the query nodes. The cost-sharing heuristic suffers
somewhat as a result (even though it is still admissible), as it is less optimistic.
To avoid this problem, one can always just use the multi-generator version of
the algorithm.
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4 REDUCTION TO ILP

In [32], [35], [34], and (31}, a method of converting the complete MAP problem
to an integer linear program (ILP) was shown. In [38] a similar method that
converts the problem of finding the IB MAP to a linear inequality system was
shown. We begin by reviewing the reduction, which is modified somewhat from
[38] in order to decrease the number of equations, and discuss the further changes
necessary to make the system find the next-best IB assignments.

The linear system of inequalities has a variable for each maximal IB hyper-
cube. The inequality generation is reviewed below. A belief network is denoted
by B = (G, D), where G is the underlying graph and D the distribution. We
usually omit reference to D and assu:ne that all discussion is with respect to
the same arbitrary distribution. For each node v and value in D, (the domain
of v), there is a set of k,« maximal IB hypercubes based on v (where d € D,).
We denote that set by 'H"‘, and assume some indexing on the set. Member j of
H*" is denoted M}", with kye > j > 1.

A system of inequalities L is a triple (V, I, ¢), where V is a set of variables,
I is a set of inequalities, and ¢ is an assignment cost function.

Definition 1 From the belief neiwork B and the evidence £, we consirucl a
system of inequalities L = Lig(B,£) as follows:

1. V is a set of variables hf‘, indezed by the sel of all evidentially supporied
mazimal hypercubes He (the set of hypercubes H such that if H is based

on w, then w is evidentially supported). Thus, V = {h}"|H,’“ € He} 4,
2. c(ht",1) = —log(P(H?")), and c(h*,0) = 0.
3. I is the following collection of inequalities:

(a) For each triple of nodes (v,z,y) s.t. z # y and v € parenis(z) N
parenis(y), and for each d € D,:

Y o+ Y <1 (@)

(v,d)EH** e€D, (U.d')EH:! J €Dy d#d’

(b) For each evidentially supporied node v that is not a query node and

is not in span(£):
ko
PIDILES 3)

deD, i=1

4The superscript v states that node v is assigned value d by the hypercube (which is based
on v), and the subscript i states that this is the ith hypercube among the hypercubes based
on v that assign the value d to v.
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(¢) For each pair of nodes w, v such that v € parents(w), and for each
valued € D, :

k' ,
}f h - 3 R 20 (4)
i=1

d€Dy A (vd)eH»

(d) For each (v,d) € E:
~ k“
Sowt=1 (5)
i=1

(e) For each query node q:

k"
Yo S h =1 (6)

d€D, i=1

The intuition behind these inequalities is as follows: inequalities of type a
enforce consistency of the solution. Type b inequalities enforce selection of at
most a single hypercube based on each node. Type c inequalities enforce the
IB constraint, i.e. at least one hypercube based on v must be selected if v is
assigned. Type d inequalities introduce the evidence, and type e introduces the
query nodes. Modifications from [38] include imploding several type a equations
into one, reducing the number of such equations by roughly a factor quadratic
in the number of hypercubes per node. Other modifications are making type b
and d into equalities to make a simpler system, and adding the equations for
the previously unsupported query nodes.

Following [32], we define an assignment s for the variables of L as a function
from V to R. Furthermore:

1. If the range of s is in {0, 1} then 5 is a 0-1 assignment.
2. If s satisfies all the inequalities of types a-d then s is a solution for L.
3. If solution s for L is a 0-1 assignment, then it is a 0-1 solution for L.
The objective function to optimize is:
d
OLis(s) = =Y s(h Ylog(P(H!")) (M
[ 30

In (38] it was shown that a optimal 0-1 solution to the system of inequalities
induces an IB MAP on the original belief network. The minor modifications
introduced here, while having a favorable effect on the complexity, encode the
same constraint and this do not affect the problem equivalence results of [38].
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If the optimal solution of the system happens to be 0-1, we have found the
IB MAP. Otherwise, we need to branch: select a variable h which is assigned
a non 0,1 value, and create two sets of inequalities (subproblems), one with
h = 1 and the other with h = 0. Each of these now needs to be solved for an
optimal 0-1 solution, as in [35]). This branch and bound algorithm may have to
solve an exponential number of systems, but in practice that is not the case.
Additionally, the subproblems are always smaller in number of equations or
number of variables.

To create a subproblem, h is clamped to either 0 or 1. The equations can now
be further simplified: a variable clamped to 0 can be removed from the system.
For a variable clamped to 1, the following reductions take place: Find the type
b inequality, the type d equation {if any), and all the type a inequalities, in
which h appears. In each such inequality clamp all the other variables to 0
(removing them from the system), and delete the inequality. After doing the
above, check to see if any inequality contains only one variable, and if so clamp
it accordingly. For example, if a type d equation has only one variable, clamp
it to 1. Repeat these operations until no more reductions can be made.

Once the optimal 0-1 solution is found, we need to add an equation prohibit-
ing that solution, and then to find an optimal solution to the resulting set of
equations.

Let S be the set of nodes in the IB assignment A induced by the optimal
0-1 solution. To update the system, add the following equation:

X wi<s

VES {H!|(v,d)eA}

This equation prevents any solution which induces an assignment B s.t. the
variables in S are assigned the same values as in \A. Thus, it is not just a
recurrence of A that is prohibited, but of any assignment B subsumed by A, in
which case we would also like to ignore B.

5 Preliminary Experimental Results

As shown in experiments in [38], finding highest probability IB assignments
is feasible for up to medium-size diagrams, even with the current probability
heuristic. However, the method begins to deteriorate rapidly starting at 100
nodes. Hence, we turn to the cost sharing and linear programming approaches.

Preliminary results show that our constraints approach can solve for the IB
MAP in networks of up to 2000 node. Figure 1 compares the timing results of
the linear programming approach on 50 networks each consisting of 2000 nodes,
with the current cost and shared cost methods. For these problem instances,
cost sharing usually did much better than ILP, which in turn did much better
than current cost. However, we expect that on larger diagram sizes, ILP will
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Figure 1: 2000 node networks.

do better than cost sharing, which we intend to confirm in the near future.®
For the most part, we found our ILP solutions relatively quickly. We would
like to note though, that our package for solving integer linear programs was
crudely constructed by the authors without the additional optimizations such
as sparse systems, etc. Furthermore, much of our computational process is
naturally parallelizable and should benefit immensely from techniques such as
parallel simplex {18] and parallel ILP 2, 3).

5There was one problem instance (not shown) for which cost-sharing took so long (and
so much memory) that it crashed the lisp interpreter (which also happened for several of the
“failed” cases for current cost).
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6 Discussion

Having presented several IB assignment generators, we would now like to tie the
loose ends together by referring to the problem of overlapping IB assignments.
This section also addresses the applicability of the method, i.e. in what tvpe
of networks does the use of instantiation-based independence buy us anything.
We conclude this section by a comparison to related work.

6.1 Treatment of Overlapping Assignments

There are several ways to handle overlapping assignments, ranging from avoid-
ing overlaps, to approximating the inclusion-exclusion formula. Poole suggests
avoiding this problem altogether by not generating any overlaps in the expla-
nation extension stage. In [27], marginal probabilities are computed by adding
up the probability mass in disjoint ezplanations, which are a special case of
IB assignments. Disjointness is achieved by, whenever generating several ex-
tended explanations from a as single partial explanations, making sure that the
extended explanations are disjoint. To do that, whenever a set of candidate
explanations A is considered for a proposition b (where the database has rules
of the form b « a;, for each a; € A), the extended explanations will consist of
the set:

{{b,a1},{b,az,-a1}, ..., {b, a4}, —01, ..., "} 4)-1}}

in which all the explanations are clearly pairwise (as well as globally) disjoint.
Unfortunately, when translated into Bayes net format, such rule sets are OR
nodes, and it is not clear how to handle other types of nodes. Poole does explain
how a Bayes net might be represented in this scheme. It turns out, however,
that negating a variable in the explanation maps into a non-trivial constraint
in the network. In addition, it may not be desirable to do this anyway. What
if the explanation {b,aj,} turns out to be by far the most likely overall? In
Poole’s scheme, we have eliminated much of its probability mass early on, and
there is no reasonable way to reorder the explanations to get, say:

{{b,a141},{b,a,ma14}, ...}

The way Poole’s algorithm works, the ordering is imposed based on some heuris-
tic (e.g. the causal strength of the rules), but there is no guarantee that what
appears best at mid-run will indeed be a global optimum. For these reasons,
we do not employ the above method of avoiding overlaps. Our solutions are
based on defering the decision as to which explanation (IB assignment) is best,
and then (if necessary) preventing successive IB assignments from overlapping
previous ones. At the stage of the algorithm where we get the IB assignments,
we know their probability ordering exactly. It is possible to defer computation
of high order higher-order terms in the inclusion-exclusion formula. The proba-
bility of these terms diminishes, and we could ignore them in the computation.
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That is because low-probability assignments are going to be ignored in the ap-
proximation algorithm anyway. Theoretically, this is a bad idea. As shown in
[25], we need a very large number of terms (about 2V7™ in the worst case) to get
a good approximation of the inclusion-exclusion formula, in the general case.
Still, this might be feasible in a practical algorithm.

Nevertheless, we use inclusion-exclusion only for a small set of overlapping
assignments, and prevent the occurrence of sets of overlapping assignments with
cardinality strictly greater than some small integer constant k. The exact value
of of k depends on which algorithm variant we use. In the best-first heuristic
search algorithms, it is hard to prevent an IB assignment from overlapping all
other assignments, and we thus use £ = 3. If an IB assignment A comes up
that is not subsumed by some previously generated IB assignment (in which
case it is thrown out), we do the following test. If A overlaps more than k IB
assignments, we split it into several assignments (which are not necessarily 1B
anymore), and toss the new assignments back into the agenda. The details of
this method are examined elsewhere [33]. In the ILP version of the algorithm,
it is much easier to prevent an overlap, and thus we can use ¥ = 0, which means
that no overlapping IB assignments are generated. See [33] for details.

6.2 Compactness of Hypercube Representation

Central to all of the algorithms for approximating marginal probabilities by enu-
merating IB assignments is the number of maximal IB hypercubes representing

- a conditional distribution. The number of assignments generated in each step

of the loop for the search-based algorithm is some fraction of the number of hy-
percubes per node. In the ILP scheme, the number of equations as well as the
number of terms per equation also depends on the number of hypercubes. The
issue of how many hypercubes are needed to represent a conditional distribution
in a network is therefore paramount.

In our experiments, rrandom network distributions were generated by split-
ting a hypercube into subcubes with some probability p. One may ask if this
represents a typical case of Bayesian networks in applications. We noted in [38]
that dirty OR nodes (as well as pure OR nodes, AND nodes, etc.) are com-
pactly representable as maximal IB hypercubes (2k hypercubes for a k parent
dirty OR node). However, a much more commonly encountered type of node is
the noisy OR. It turns out that if a noisy OR is represented as a single node
(with a single distribution array), its maximal hypercube representation is of
size 2%, which is certainly not compact.

If we use é-IB hypercubes [38], and the noisy OR has high causal strength
links, again 2k maximal é-IB hypercubes will suffice. However, it is unclear
how 6-IB assignments can be used for approximating marginal probabilities
without severely impairing the precision of the approximation algorithm (the
probability of a §-IB assignment can only be approzimated in linear time, but
not computed exactly). It turns out, however, that representing a noisy OR in
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its causal independence form [1, 26], with extra nodes added between the causes
and the noisy OR node itself, things are much improved. In this representation,
the noisy OR is translated into a pure OR, and can be represented with 2k
hypercubes. The additional nodes require another 4k hypercubes. And, in fact,
if zero probability hypercubes are dropped (they will never participate in any
useful IB assignment), a total of 3k hypercubes suffice to describe a noisy OR.

Since the commonly used noisy OR is compactly representable, it is interest-
ing whether other cases of causal independence can be represented compactly,
such as noisy MAX [29], as well as more general types of causal independence.
For deterministic binary valued nodes, this question reduces to the question: is
there a compact DNF representation for the function? Likewise, in the causal
independence representation, the deterministic part is separated out as a deter-
ministic function f and k noisy “channels”. If f is compactly representable in
DNF, then the answer is affirmative. In the more general case of multi-valued
nodes, the issue is a bit more complicated, and is beyond the scope of this
paper. Suffice it to say that the Generalized IB hypercubes presented in [37]
can be used to better advantage with multi-valued nodes, since they allow the
aggregation of values in a node into a single “macro value”.

6.3 Related and Future Work

The work on term computation [12] and related papers are extremely relevant
to this paper. The skewness assumption made there, or a weaker version of it,
also make our method applicable. In a sense, these methods complement each
other, and it should be interesting to see whether IB assignments (or at least
maximal IB hypercubes) can be incorporated into a term computation scheme.

This paper enumerates high probability IB assignments using a backward
search from the evidence. [28] also enumerates high probability assignments,
but using a top down (forward) search. Backward constraints are introduced
through conflicts. It is clear that the method is efficient for the example do-
main (circuit fault analysis), but it is less than certain whether other domains
would obey the extreme probability assumption that makes this work. If that
assumption does not hold, it may turn out that backward search is still better.
On the other hand, it should be possible to take advantage of IB hypercubes
even in the forward search approach [33]. Note that among the algorithms pre-
sented here, the current probability heuristic ignores forward constraints, while
the shared-cost heuristic does employ some form of forward reasoning by in-
corporating the costs from the top-down initialization. The ILP method uses
global constraints that also include the top-down constraints, but what role the
top-down constraints play in the search is unclear.

Several stochastic approximation algorithms find the MAP. For example,
in [16] simulated annealing is used. It is not clear, however, how one might
use it either to enumerate a number of high-probability assignments or make it
search for the IB MAP. A genetic algorithm for finding the MAP [30] makes a
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more interesting case. The authors in [30] note that the probability mass of the
population rises during the search and converges on some value. They do not say
whether assignments in the population include duplicates, however, and make
no mention of the possibility of approximating marginal probabilities with that
population. It seems likely that if the search can be modified to search among
IB assignments, then the fact that a whole population is used, rather than a
single candidate, may provide a ready source of near-optimal IB assignments.
Of course, we are not guaranteed to get IB assignments in decreasing order of
probability, so slightly different methods would have to be used to approximate
the marginal probabilities.

Finally, it should be possible to modify the algorithms presented in this
paper to work on GIB assignments and é-IB assignments, where an even greater
probability mass is packed into an assignment [38, 37]. Some theoretical issues
will have to be resolved before we can do that, however.

7 SUMMARY

Computing marginal (prior or posterior) probabilities in belief networks is hard.
Approximation schemes are thus of interest. Several deterministic approxima-
tion schemes enumerate terms, or assignments to sets of variables, of high prob-
ability, such that a relatively small number of them contain most of the proba-
bility mass. This allows for an anytime approximation algorithm, whereby the
approximation improves as a larger number of terms is collected. IB assign-
ments are partial assignments that take advantage of local independencies not
represented by the topology of the network, to reduce the number of assigned
variables, and hence the probability mass in each assignment.

What remains to be done is to come up with these IB assignments in a
decreasing order of probability. This is also a hard problem in general, unfor-
tunately. The factors contributing to complexity, however, are not maximum
clique size or loop cutset, but rather the number of hypercubes. Under prob-
ability skewness assumptions, the search for high probability IB assignments
is typically more efficient, and the resulting approximation (collecting a small
number of assignments) is better.

Three algorithms for approximating marginal algorithms are presented: a
modification of a node-based best-first search algorithm for finding the IB MAP,
an edge-based best-first search algorithm with a cost-sharing heuristic, and an
algorithm based on linear systems of inequalities. We have also experimented on
highly connected diagrams were the conditional probabilities are represented as
sets of hypercubes (distribution arrays are precluded, since they are exponential
in size), and got favorable results in cases where the join-tree algorithm cannot
handle in practice.

Preliminary results show that using the cost-sharing heuristic improves per-
formance of the best-first search algorithm by more than one order of mag-
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nitude, and that the algorithm based on linear systems of inequalities is still
faster. Naturally, more conclusive experiments will have to be performed.
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